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Abstract

We present a work-in-progress snapshot of learning with a 15 billion parameter deep learning net-
work on HPC architectures applied to the largest publicly available natural image and video dataset
released to-date. Recent advancements in unsupervised deep neural networks suggest that scaling
up such networks in both model and training dataset size can yield significant improvements in the
learning of concepts at the highest layers. We train our three-layer deep neural network on the Ya-
hoo! Flickr Creative Commons 100M dataset. The dataset comprises approximately 99.2 million
images and 800, 000 user-created videos from Yahoo’s Flickr image and video sharing platform.
Training of our network takes eight days on 98 GPU nodes at the High Performance Computing
Center at Lawrence Livermore National Laboratory. Encouraging preliminary results and future
research directions are presented and discussed.

1 Introduction

The field of deep learning via stacked neural networks has received renewed interest in the last decade [1, 2, 3]. Neural
networks have been shown to perform well in a wide variety of tasks, including text analysis [4], speech recognition
[5, 6, 7], various classification tasks [8, 9], and most notably unsupervised and supervised feature learning on natural
imagery [1, 2, 3].

Deep neural networks applied to natural images have demonstrated state-of-the-art performance in supervised object
recognition tasks [10, 1] as well as unsupervised neural networks [2, 3]. The classical approach to training neural
networks for computer vision is via a large dataset of labeled data. However, sufficiently large and accurately labeled
data is difficult and expensive to acquire. Motivated by this, [3] explored the application of deep neural networks
in unsupervised deep learning and discovered that sufficiently large deep networks are capable of learning highly
complex concept level features at the top level without labels.

Spurred by this advancement, [2] set out to construct very large networks on the order of 109 to 1010 parameters.
A key advancement was the highly efficient multi-GPU architecture of their model. [2] employed both model and
data parallelism and was able to process 10 million YouTube thumbnails in a few days processing time on a medium
sized cluster. A notable result was the unsupervised learning of various faces, including those of humans and cats.
Ultimately, improved feature learning at larger scales can improve downstream capabilities such as scene or object
classification, additional unsupervised learning (i.e. via topic modeling [11] or natural language processing algorithms
[12]).
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In collaboration with the authors of [2], we have scaled a similar model and architecture to over 15 billion parameters
on the Lawrence Livermore National Laboratory’s (LLNL) Edge High Performance Computing (HPC) system. Our
long-term goal is two-fold: (1) explore at-the-limit performance of massive networks (> 10 billion parameters) and
(2) train on and analyze datasets on the order of 100 million images.

As the number of network parameters grow, datasets need to be scaled accordingly to avoid overfitting the models.
We take advantage of a brand-new dataset released jointly by Yahoo!, LLNL and the International Computer Science
Institute (ICSI) called the Yahoo! Flickr Creative Commons 100M (YFCC100M) dataset10. The dataset is, to the
authors’ knowledge, the largest single publicly available image and video dataset ever published. In addition to the raw
images and video, the YFCC100M also contains metadata for each entry including locations, camera types, keywords,
titles, etc. Although beyond the scope of this paper, this rich associated meta-data potentially offers researchers
additional avenues of semantic multi-modality learning to explore.

Working with datasets, models and computing architectures at the scales considered in this paper presents several
daunting engineering challenges. For example, the significantly greater number of GPUs and compute nodes used
in our system versus [2] creates communication issues in MPI. In addition, a typical model takes up over 40 GB of
memory, making simple offline analysis tasks such as visualization challenging. Various network architectures were
tested, balancing performance and computational constraints, before we arrived at our current model. Finally, as in
[2], data throughput presents a bottleneck to model training. We present a novel pipeline approach to address this
problem.

The rest of this paper is organized as follows. In Section 2 we give a brief overview of the YFCC100M dataset. The
network architecture and computational framework being employed is described in Section 3. We present preliminary
results and visualizations of our network in Section 4. Finally, we summarize and discuss future research directions in
Section 5.

2 Overview of the YFCC100M Dataset

In late June 2014, Yahoo! released the Yahoo! Flickr Creative Commons dataset (YFCC100M). This dataset consists
of 100 million Flickr user-uploaded images and videos (99,206,564 images and 793,436 videos) along with their
corresponding metadata including title, description, camera type, tags, and geotags when available. All of the data is
under Creative Commons licensing and is freely provided to scientists for the advancement of multimedia research 1. In
addition to the raw images, videos, and metadata, Yahoo! in collaboration with the ICSI and LLNL will be computing
and providing standard computer vision and audio features using LLNL’s supercomputing resources.

Wang et al. [13] have used YFCC100M data to build systems that associate images with more natural annotations like
those found in user-generated captions. Others are interested in using the YFCC100M imagery and audio to geolocate
where the photo or video was taken [14]. In fact, the 2014 MediaEval Placing Task is using YFCC100M as the source
of benchmark data [15]. We are interested in using YFCC100M as our sandbox dataset for learning image features
using massive unsupervised neural networks, repeating the experiment by [3] on an order of magnitude more data and
neural network parameters. In particular, we want to see what other “grandmother neurons” [3] our network would
automatically learn from YFCC100M.

The 99,206,564 images were created and posted by 578,268 different Flickr users. 76%, 20%, and 4% of the images
have titles, auto-titles, or no titles, respectively. The average number of words per title is 3.08. 32% of the images have
descriptions with an average of 22.52 words per description. Finally, 69% of the images have on average 7.07 tags per
image. The top 60 tags are shown in Table 1. In Fig. 1 we show example images and associated meta-data for several
YFCC100M images.

1Available at http://research.yahoo.com/Academic Relations
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Table 1: Top 60 Tags in YFCC100M Images

square iphoneography square format instagram app california travel
nikon usa canon london japan france
nature art music europe beach united states

england wedding italy new york canada city
vacation germany party park water people

uk spain architecture summer festival nyc
taiwan paris san francisco australia winter sky
snow concert night family china museum
food street live washington landscape flower

sunset photo flowers holiday trip photography

Figure 1: Examples of YFCC Data, and the associated metadata. Photo credits to Yahoo! users “Dougtone”, “as-
caro41”, “mlaaker”, “Ingy The Wingy”, “monoprixgourmet bis”.
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3 Analysis with Large Scale Neural Networks

3.1 Network Architecture

For the large set of image data, we employed a three-layer, large-scale deep neural network with a reconstruction
independent component analysis (RICA) cost function,

min
W,α,b

∑
i

∥∥∥WT (αWx(i)) + b− x(i)
∥∥∥2
2
+ λ
√
(αWx(i))2

subject to ‖W (k)‖2 = 1,∀k
(1)

As in [2], W is a weighting matrix, α is a scaling value and x(i) are the data points at the beginning of each layer. In
addition, we introduce an offset, b, for increased model flexibility. The parameter λ controls the relative sparsity, and is
set to 0.1 at the first two layers and 0.01 at the final layer. Unlike [2], we do not presently include a pooling layer, as we
believe the scale of the network and training data allows a similar translational invariance to be automatically learned.
A particular advantage conferred by the RICA construction in (1) is that the sparseness term λ

√
(αWx(i))2 can be

computed in-situ with the rest of the model parameters. This is in contrast to the conventional sparse autoencoder
construction that requires a second pass through the data to compute a sparseness-specific gradient contribution.

Fig. 2 illustrates the structure of our network. The three layers are composed of two untied convolutional layers, and a
third fully-connected layer. The first convolutional layer utilizes 5184 filters 2 of input size 16× 16× 3 with stride 4

and output size 4× 4× 24. The second layer takes 16 spatially contiguous 3 4× 4× 24 outputs of the first layer and
connects them fully to a 4×4×24 output. The stride length of the second layer is 4. The third layer is dense, and fully
connects the 62×62×24 outputs of the second layer to 4096 top-level neurons. The total number of parameters trained
is 15 billion. After each layer, local contrast normalization (LCN) is applied prior to continuing onto the next layer.
Though no pooling is applied, the window sizes at the next layer are large enough to incorporate spatial information
from neighboring blocks.

Training data is arranged into 99,207 data blocks of 960 images. Each data block consists of 5 mini-batches, where
each mini-batch contains 192 images. Due to the scale of the data, the proposed algorithm reduces training time by
employing a pipeline technique where the next layer begins training before the previous layer has finished. Analogous
to the example shown in Fig. 3, after a layer L has trained an initial set of data blocks (in our case, 1000), the next
layer, L + 1, starts training. To accomplish this, two instances of the layer L are run simultaneously: one which
continues training and one that uses up-to-date parameters to forward propagate data from Block 0 to the layer L+ 1.
The parameters of the forward-propagating layer L instance are periodically synchronized with the layer L instance
that continued training. We observed that our model was not sensitive to the choice of synchronization frequency. As
a rule of thumb, we wait to train layer L + 1 until the objective of layer L stabilizes, which typically occurs after
approximately one million images.

3.2 HPC Architecture

To train the neural network at scale, we used 98 nodes of the Edge HPC cluster at Lawrence Livermore National
Laboratory. The Edge cluster consists of 206 nodes with 12 core Intel Xeon EP X5660 running at 2.8 GHz. Each
node has 96 GB of DRAM and a Tesla M2050 (Fermi) NVIDIA GPU with 3 GB of GDDR5. The training algorithm
is model parallel as described in [2], with the nodes and GPUs processing each mini-batch across the system and

2Arranged in a 72× 72 grid
3Arranged in a 4× 4 grid
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Figure 2: Network topology of large scale, trained network. Approximately 15 billion parameters

Figure 3: Pipeline for semi-parallel training of sparse autoencoders from a single data source

distributing the model across the GPUs. Communication was provided by MPI over Mellanox QDR Infiniband cards.
The GPU accelerators were used with CUDA 5.5 and MPI-direct communication and the operating system was a
2.6.32 kernel RHEL 6 derivative.

The dataset was stored in a Lustre file system with a peak bandwidth of 10 GB/s. Each mini-batch was copied from
Lustre into memory and then streamed into the GPU’s memory. Each GPU is responsible for computing its section of
the model parameters for the current mini-batch. Communication within the algorithm occurs when a layer’s input (or
output) field spans multiple GPUs. The communication is handled by a distributed array data structure (using MPI)
within the training algorithm. Global communication is minimized by using untied local receptive fields, and allowing
receptive fields to be trained independently.
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4 Preliminary Results

Figure 4: Visualization of a selection of typical first layer weights. The right figure is a zoomed-in crop of the left.

We trained the network using all images from the YFCC100M dataset. Images were preprocessed as in [2], and
subsequently resized to 300 x 300 pixels by first centering, then scaling the smallest dimension to 300 pixels, and
finally cropping. After training all three layers, we forward propagated 2 million images through the network in
order to obtain activation values for visualization. Note that in this paper, the test set is significantly noisier than the
benchmark Labeled Faces In the Wild [16] and ImageNet [17] datasets considered in previous works such as [3].

In Fig. 4 we visualize some typical first layer weights. As expected, they are trained to capture various types of edges
and separate into color and texture focused neurons. In Fig. 5, we visualize some example neurons by showing the
top 5 stimuli for each neuron. We observe that our network is capable of learning significant structure, identifying
buildings, aircraft, text, cityscapes, and tower-like buildings, among many others. The network seems to cue in on
distinctive textures such as the edges of text, sides of buildings and the sharp edge of airplanes against the smooth
gradation of the sky. Moreover, the network seems to activate on large-scale structures within an image rather than
local features.

Our results, while encouraging, suggest that significant improvements can be achieved through improved network
architecture and increased depth. As was demonstrated in [1], network architecture has a significant impact on the
performance of deep networks. We believe that a significant contributor to our networks’ performance is due to its
large size being able to capture complex concepts. While the networks described in [3] were able to learn complex
features in just three layers, our results suggest that extremely large datasets such as the YFCC100M can support
deeper networks with improved high-level concept learning.
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Figure 5: Top-5 stimuli of example layer 3 neurons. Images have been whitened.

5 Summary and Future Work

The results discussed in this paper present a snapshot of the work in progress at Lawrence Livermore National Labo-
ratory in scaling up deep neural networks. Such networks offer enormous potential to researchers in both supervised
and unsupervised computer vision tasks, from object recognition and classification to unsupervised feature extraction.
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To date, we see highly encouraging results from training our large 15 billion parameter three-layer neural network
on the YFCC100M dataset in an unsupervised manner. The results suggest that the network is capable of learning
highly complex concepts such as cityscapes, aircraft, buildings, and text, all without labels or other guidance. That
this structure is visible upon examination is made all the more remarkable due to the noisiness of our test set (taken at
random from the YFCC100M dataset itself).

Future work on our networks will focus on two main thrusts: (1) improve the high-level concept learning by increasing
the depth of our network, and (2) scaling our network’s width in the middle layers. On the first thrust, we aim
for improved high-level summarization and scene understanding. Challenges on this front include careful tuning
of parameters to combat the “vanishing gradient” problem and design of the connectivity structure of the higher-
level layers to maximize learning. On the second thrust, our challenges are primarily engineering focused. Memory
and message passing constraints become a serious concern, even on the large HPC systems fielded by LLNL. As
we move beyond our current large neural network, we plan to explore the use of memory hierarchies for staging
intermediate/input data to minimize the amount of node-to-node communication, enabling the training and analysis of
even larger networks.
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